skip to main content


Search for: All records

Creators/Authors contains: "Chand, Hum"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We investigate the possible presence of quasi-periodic oscillation (QPO) signals in 2103 blazars from the Zwicky Transient Facility (ZTF) time-domain survey. We detect a low-frequency QPO signal in five blazars observed over these 3.8-yr-long optical r-band ZTF light curves. These periods range from 144 to 196 d detected at ≳4σ significance levels in both the Lomb–Scargle periodogram and weighted wavelet Z-transform analyses. We find consistent results using the phase dispersion minimization technique. A similar peak is detected in the g-band light curves at a slightly lower significance of 3σ. Such nearly periodic signals on these time-scales in optical wavebands most likely originate from a precessing jet with high Lorentz factor, closely aligned to the observer’s line of sight or the movement of plasma blobs along a helical structure in the jet.

     
    more » « less
  2. ABSTRACT

    To unravel the dominant cause of the weak emission line in a subset of optically selected radio-quiet ‘weak emission line quasars’ (WLQs), we have investigated the possibility of an underdeveloped broad line region (BLR). For this, we have modelled spectral energy distributions (SED) of 61 WLQs by using their optical and infrared (IR) photometric observations from Sloan Digital Sky Survey (SDSS) and WISE, respectively. SED fit consists of various emission components, including the luminosity from the dusty torus (Ltor). For comparison with the normal quasar, we have used a control sample of 55 Quasi-Stellar Objects (QSOs) for each WLQ matching in emission redshift and SDSS r-band. Based on our measurement of Ltor, we found a decrement of 42 ± 2 per cent in IR luminosity in WLQs with respect to the control sample of normal QSOs. Using Ltor/Lbol as the measure of torus covering factor (CFtor), we found a similar decrement in WLQ covering factor, with their CFtor distribution being significantly different with respect to the normal QSOs with a KS test Pnull of 4.27 × 10−14. As dusty torus and BLR covering factors are expected to be of a similar order in active galactic nucleus (AGN), our results suggest that the BLR in the WLQs is underdeveloped and could be a dominant cause of the weakness of their emission line. As a result, our analysis gives support to the models of WLQs based on the evolution scenario being in an early stage of AGNs.

     
    more » « less
  3. ABSTRACT

    We present the accretion disc-size estimates for a sample of 19 active galactic nuclei (AGNs) using the optical g-, r-, and i-band light curves obtained from the Zwicky Transient Facility survey. All the AGNs have reliable supermassive black hole (SMBH) mass estimates based on previous reverberation mapping measurements. The multiband light curves are cross-correlated, and the reverberation lag is estimated using the Interpolated Cross-Correlation Function method and the Bayesian method using the javelin code. As expected from the disc-reprocessing arguments, the g − r band lags are shorter than the g − i band lags for this sample. The interband lags for all, but five sources, are larger than the sizes predicted from the standard Shakura Sunyaev (SS) analytical model. We fit the light curves directly using a thin disc model implemented through the javelin code to get the accretion disc sizes. The disc sizes obtained using this model are on an average 3.9 times larger than the prediction based on the SS disc model. We find a weak correlation between the disc sizes and the known physical parameters, namely the luminosity and the SMBH mass. In the near future, a large sample of AGNs covering broader ranges of luminosity and SMBH mass from large photometric surveys would be helpful in a better understanding of the structure and physics of the accretion disc.

     
    more » « less